(b) Inverse functions
$$(S|x|-1-x,3)$$

Motivation: the inverse function of fixs. undo fixs.
Def." We say $y(x_1)$ is the inverse function of fixs. if
 $g(y(x_3) = x$ for all x in the advance of fixs. if
 $g(y(x_3) = x$ for all x in the advance of g.
If $g(x_3) = x$ for all x in the advance of g.
If $g(x_3) = x$ for all x in the advance of g.
Def." We say fix is inverse of fixs. for is also the inverse functions of
 $g(x_1)$ be dente $g(x_3)$ by $f'(x_3)$.
for a is invertible if fixe low an inverse.
fixe is invertible if and outly if fixe is 1-1. that is,
for every y in the range of f, there is exactly 1 element x in
the domain of f that fixe = x.
Ex. Verify that $(f(x_3) = x^{\frac{1}{2}}$ on $(o_1 c_2)$ are inverse functions.
 $g(x_3) = x^4$ on $(o_1 c_2)$
 $Sa^{\frac{1}{2}}$. For each x in $(o_1 c_2)$, $(fog)(x_1) = g(f(x_1)) = g(x^{\frac{1}{2}}) = (x^{\frac{1}{2}})^{\frac{1}{2}} = x$.
For each x in $(o_1 c_2)$, $(fog)(x_1) = f(f(x_1)) = f(x_1^{\frac{1}{2}})^{\frac{1}{2}} = x$.
So they are inverse functions.
Ex. Find the inverse function of fixe = $x^{\frac{3}{2}}$
 $g(x) = x^{\frac{1}{2}}$.
 $g(x) = x^{\frac{1}$

So the inverse function is
$$f'(x) = \left(\frac{x-q}{4}\right)^{\frac{1}{4}}$$
.
(Q. Is $f(x) = x^{2}$ invertile on $(-\infty, \infty)$?
Attempt: $y = x^{2}$, $Jy = Jx^{2} \stackrel{?}{=} x$.
But x vary be negative on $(-\infty, \infty)$, whence $Jx^{2} = -x$.
Indeed, $f(-1) = f(1) = 1$, so f count be $d-1$.
• Horizontal line test: five is invertible of and only if every horizontal.
But invertible from $[0,\infty)$ to $[0,\infty)$.
• f invertible from $[0,\infty)$ to $[0,\infty)$.
• The graph of free out $f'(x)$ are symmetric about $y=x$.
Es YA $f'(x)$
• $f(x)$
• $f(x)$
• $f(x)$
• $f(x)$
• $f(x)$ invertible. Similarly time for $f(x)$ have derendry.
• Then if differentiable from had no stationary points, for is invertible.