· More facts about log's. \cdot $\log_b(\frac{1}{b}) = \log_b(1) - \log_b(b) = 0 - 1 = -1$. \cdot \int $\log y$ (x) = $\frac{d^2y}{dx^2} = \frac{log 1}{log_6(1) - log_6(b)} = 0$
 $\frac{log_b(x)}{log_b(\frac{1}{b})} = -log_6(x)$ · So logy ix) has the graph of logy ix) fliped vertically: $\log_2(x)$ ℓ ogi (x) $\begin{picture}(180,10) \put(0,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}}$ fog
2
1 ^① Derivatives of logarithms and exponentials. · Goal of this lecture: know how to compute the derivatives of (log's and Cep's) (we already know this.) · Find the tangout line to the graph of <u>th (x)</u>?
1 (thus), x) Here forts about $\frac{log_2 S}{S_3}$,
 $log_3 (S_0) = log_3 (1) - log_3 (k) = 0 - 1 = -1$.
 $log_3 (S_0) = \frac{log_3 (S_1)}{log_3 (S_0)} = -log_3 (S_0)$
 $- S_0 = log_3 (S_0)$ has the graph of log, is the
 $- S_0 = log_3 (S_0)$ has the graph of log, is the graph of log, is tangent line to e^{x} at lu(x): $slope = \frac{el}{dx}e^{x}|_{x= -\frac{el}{dx}(x)} = e^{x}$ $x=f_{x(x)}$ $= e^{\frac{\ell_{x} x}{\ell_{x}}} = x$. t angent fine to fu(x) at x must has reciprocal slope =

 $\frac{d}{dx}(f_{n}(x)) = \frac{1}{x}$ \cdot How about $\frac{d}{dx}$ log_b (x) ? The Let $b>0$ and $b \ne 1$. Then $\frac{d}{dx} \log_b (x) = \frac{1}{\ell_0 (b)} \cdot \frac{1}{x}$

of Note via the change of base, $\log_b (x) = \frac{\ell_0 (x)}{\ell_0 (b)}$, and $\ell_0 (b)$ is

a fixed constant. So
 $\frac{d}{dx} (\log_b (x)) = \frac{d}{dx} (\frac{1}{\ln(b)} \ln(x)) = \frac{1}{\ell_0 (b)} \cdot \$ · Concavity of $f(x) = log_b(x)$: $O < h < I$ $b>1$ When $b>1$, $f(x) = \frac{1}{h+b} - \frac{1}{x}$, $f''(x) = -\frac{1}{h+b}x^{-2} < 0$,
 $\Rightarrow h(b)$ Since $h(b) > 0$ as $b>1$. \Rightarrow Concare down $sncc$ $ln bc \circ as$ $o < b < 1 \Rightarrow concawe$ up $(\frac{1}{2})$
 $\frac{d}{dx} b^x = (4.6) b^x$ · Concavity of $f(x) = b^x$: ∂ c ϕ \leq $\frac{1}{1}$ • both cases: $f(x) = (f(x b)) b^x$, $f'(x) = (f(u b) (f(h b)) b^x = (f(x b)^1 b^x > 0)$ concome up

Examples on particularly compute derived of b's and log₁x:

\nFind
$$
\frac{d}{dx} \& (\frac{x^{5}}{2})
$$
.

\nFind $\frac{d}{dx} \& (\frac{x^{5}}{2})$.

\nFind $\frac{d}{dx} \& (\frac{x^{5}}{2})$.

\nFind $\frac{1}{2}$ and $\frac{d}{dx} \& (\frac{x^{5}}{2}) = \frac{1}{2}(x^{5}) - \frac{1}{2}(x^{5})$.

\nSo $\frac{d}{dx} \{w = 5 \frac{d}{dx} (\& (x^{5}) - \frac{1}{2}(x^{5})$.

\nSo $\frac{d}{dx} \{w = 5 \frac{d}{dx} (\& (x^{5})^{\times} + x^{2} \frac{d}{dx} (x^{5})$.

\nBut $\frac{d}{dx} (x^{2}x^{5}) = \frac{d}{dx} (x^{3}x^{5} + x^{2} \frac{d}{dx} (x^{5})$.

\nBut $\frac{d}{dx} (x^{2}x^{5}) = \frac{d}{dx} (x^{3}x^{5} + x^{2} \frac{d}{dx} (x^{5})$.

\nBut $\frac{d}{dx} (x^{2}x^{5}) = \frac{1}{2}x^{5} - \frac{1}{4}x^{5} - \frac{1}{4}x^{5} + \$

 $\overline{}$

Ex. Final $\frac{d}{dx}$ fog (e).

Sol^h Simplify: lag (e) $\frac{ln(e)}{ln(x)} = \frac{1}{ln(x)} - \frac{1}{9}$

f = 1, f'= 0, $q = ln(x)$, $q' = \frac{1}{x}$
 $\frac{d}{dx} log_x(e) = \frac{f'g - fg'}{q^2} = \frac{-\frac{1}{x}}{(ln(x))^2} = -\frac{1}{x(ln(x))^2}$